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INTRODUCTION

We propose a new class of dynamical systems con-
sisting of many strongly interacting components. They
admit an exact reduction (of the type of a self-consis-
tent field) to simpler systems, whose dimension does
not depend on the number of components. The interac-
tion is not assumed to be small, which distinguishes this
approach from all known ones and makes it possible to
simulate complicated types of kinetics.

Consider a dynamical system consisting of a large
number N of identical components:

dx;

N
- = a(x;) + Zb(x,, Xp). (D

k=1

The mechanism of pairwise interactions in the case of
bilinear systems is specified by a vector function b(x, y)
of two vector arguments, x and y. This function is the
same for any pair of components x; and x;.

The number N characterizes the degree of atomicity
(block nature) of the complex system under study. Typ-
ical values of N are huge, for example, the number of
stars in a galaxy (10'!) or the number of gas molecules
in a volume of 1 cm? (10'%). The range of N in biologi-
cal systems is also wide (from hundreds to millions of
components). A common feature of all these systems is
that neither modern computers nor those to appear in
the near future would be powerful enough to handle
them.

The basic idea of the approach suggested can be
illustrated by examples of bilinear systems. Moreover,
this case is of interest in itself.

System (1) is called bilinear if a(x) and b(x, y) are
linear functions of their arguments.
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At the first step, we only use the linearity of H(x, y)
in its second (external) argument. Introducing the new
(aggregate) variable

N
X = 2 X, (2)

k=1

we obtain an equation for x;:

dx;
o = a(x;)+ b(x;, X). (3)
This equation has a great advantage, since it shows that
x; responds to the entire X rather than to each compo-
nent x; separately, as could be concluded at first glance
from system (1).

The next step is of decisive importance. Since a(x)
and b(x, y) are linear functions of x, we add all equa-
tions in (3) to obtain an equation for X alone, not
involving other variables:

dx _ a(X)+ B(X, X). 4)
di
For bilinear systems, the aggregate variable X turns out
to satisfy a reference equation.

Thus, we have obtained the system

‘%( = a(X)+ B(X, X),

(

. (5)
U~ 4+ b(x, X).

dt

The introduction of X has substantially simplified the
situation.

Note two important points. First, the equation for X
is independent of x;. Second, the components x; depend
only on X rather than interacting with each other, as
occurred in the original system

"d_)r( = a(X)+ B(X, X),

(6)

Z—f = a(x)+b(x, X).

The dimension of this system does not depend on N.
This passage is based on the important fact that the
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equations for x; in system (5) are identical. Therefore,
the motion of the phase point in the high-dimensional
space of (x, X, ..., x,) Is equivalent to the motion of the
set of points (x, x,, ..., x,) in the space of only one com-
ponent. Thus, the limit passage as N — co admits a
remarkable interpretation: this is the transition to the
phase portrait of system (6) in the space (x, X). This task
(the construction of a phase portrait in the low-dimen-
sional space of x) can be successfully handled in mod-
ermn applied mathematics, which combines sophisti-
cated computational algorithms with analytical meth-
ods of the qualitative theory of ordinary differential
equations.

MACRODYNAMICS
The first equation

((IT},( = a(X)+h(X, X) @)

in the reduced system can be naturally called a macro-
dynamic equation, because it describes the behavior of
the system as a whole. The word macrodynamics was
intentionally chosen to be similar to the word thermo-
dynamics. However, we should simultaneously indicate
the differences between them. First, thermodynamics is
usually associated with asymptotics of a special class of
Hamiltonian systems and, in this sense, it is much more
delicate and much more sophisticated. Second, despite
its name, thermodynamics deals with steady states of
systems rather than with their dynamics. Third, the
usual thermodynamic approach is axiomatic, and few
theorems are available on the properties of passage to
the limit as N — oo. Nevertheless, the main similarity
between thermodynamics and macrodynamics 1s that
they both analyze the asymptotic behavior of high-
dimensional systems. From this point of view, bilinear
systems are fairly useful, because they can be used to
test various asymptotic assumptions.

A much wider class of systems exist for which pas-
sage to the limit as N — oo is also reduced to analyzing
phase portraits, but their construction and analysis lie
outside the scope of this paper.

Returning to the macrodynamic equation (7), we
note that it includes, as special cases, various systems
investigated earlier independently, for example, the
Verhulst-Pearl equation

17).4 2.
T aX+bX; 8)

' Some work is for man and the other work is for computer. A
mathematician passes 1o the limit, and then a computer processes
data. This is the appropriate division of labor between science
and technology.
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the Volterra system

X _ 4 X+b XY,
dt )
¥ _ Y +boXY;
dt
the Lorenz system
dx
— = -cX+o0oY
o cX + oY,
dY
o px-vY-X
=P Y-XZ, 10)
dZ _ 974 xv;
dt
the Lotka system
(fl—)r( = X(A+a, X +a,Y +ayZ),
dY
i Y(u+b,X+b,Y+b7), an
‘% = Z(v+c, X+, Y +c32),

and other, lesser-known systems, among which we
especially note fluid dynamic systems [1, 2] and the
Rikitake dynamo [3].

Some remarks should be made about these equa-
tions. Verhulst’s equation was derived in the middle of
the 19th century. It represents a refined Malthus
approach to the population dynamics problem. The
Volterra system has a similar history. It was also
derived in the population dynamics problem (predator—
victim) and then found an exact (rather than approxi-
mate, as in the original problem) interpretation in
chemical kinetics (cold flames). The Lorenz system
arose from the hydrodynamic problem of turbulence.

The Lotka system (11) has a curious history. It was
derived in an analysis of the kinetics of a simple chem-
ical system and consisted of two equations. Later, it was
found that analogous systems of order three arise in
population dynamics problems involving two predators
and a victim or two victims and a predator. However,
the study of this system was long retarded by the lack
of computers and the impossibility of an analytical
approach. Then systems of this kind were found to arise
in the stability analysis of motion (three pairs of purely
imaginary roots) even in purely mechanical systems.
The well-developed apparatus of stability theory was
used to uncover some general properties of these sys-
tems. Later, such systems again appeared in connection
with Eigen’s ideas concerning the chemical evolution
(hypercycles) [4], and they were analyzed indepen-
dently of previous studies. Finally, the complex behav-
ior of such a system (namely, a chain of limit-cycle
doublings resulting in the onset of mixing in the sys-
tem) has recently been studied numerically from an
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ecological point of view (human interference in a pred-
ator—victim system) by Yu.M. Aponin with coauthors at
the Institute of Mathematical Problems of Biology,
Russian Academy of Sciences. Steady-state regimes
originating in the process of mixing are now known as
strange attractors.

The main result of this work is that any of the sys-
tems above is interpreted as a reference equation for a
multicomponent system. Clearly, this approach consid-
erably increases the range of applicability of all these
systems. Another important circumstance is that, in this
approach, the systems listed are no longer a random set
of historical curious things but become special cases of
a uniform general approach; the are reference macrody-
namic equations of multicomponent bilinear systems.

The one-dimensional reference equation

dX _

o = aX+ bX’ (12)

is always the Verhulst—Pearl equation. By making the
substitutions

a 1
X =— = - 13
dE 1=t (13
it is reduced to the standard form
d 2
S-e-e (14)

il
which has three fixed points: a point at infinity, § = 0,
and € = 1. This equation is usually interpreted as a tran-
sition from the neighborhood of an unstable fixed point
to the neighborhood of the stable fixed point & = 1.

An escape process & — —oo is also possible, but this
is interpreted as a blowup and system destruction. That
is why one-dimensional systems support the idea of a
unique macrodynamic equilibrium, which resembles
the idea of a thermodynamic equilibrium.

However, the situation differs substantially in the
two-dimensional case, where the reference control
involves ten parameters:

170.4 2
71 = an X, +apX, + by, X +b112X1X2+b122X§-

' (15)
dX2 2 2
ar = an X, +anX,+ by Xy +byn X Xo + b0y X5

The variety of types of kinetics arising in this system is
much wider but can still be effectively enumerated. A
detailed analysis is beyond the scope of this paper. The
presence of the exact reference equation describing the
behavior of the complete system makes it possible to
conjecture that there exists a relationship between
phase changes and bifurcations in the macrodynamic
equation.

The usual view of phase transitions is associated with
changes in steady states (thermodynamic equilibria)

depending on the varying external parameters of the sys-
tem (more frequently, depending on the volume).

However, an exact description of the overall system
behavior (by using a macrodynamic equation) makes it
possible to extend the concept of a phase change to
transitions from one steady-state regime (e.g., a stable
equilibrium) to another (e.g., a limit cycle). Moreover,
the example of the Lorenz system (or the above-men-
tioned stochastic regime in the Lotka system) shows
that the set of steady-state regimes must include quasi-
stochastic regimes (probably, they should better be
referred to as mixing modes). Accordingly, the concept
of a phase change is extended as well. Clearly, all that
was said above holds true for the properties of bilinear
systems, and the transfer of this reasoning to Hamilto-
nian systems requires additional effort.

ASYMPTOTICS OF A REFERENCE EQUATION
(IN THE NEIGHBORHOOD OF INFINITY)

A reference equation arises for the variable X, which
is the sum of all components and (generally speaking)
increases together with NV:

N

X = ZA‘A = N,.

k=1

(16)

Therefore, the substitution of this relation into (7) and
time rescaling

t=57 (17)
give the equation
dy 1
—_— = — ) vy 1
- Na(_\) +b(v,y), (18)
which becomes homogeneous as N — oo:
dy
— = b(v, y). 1
o (v, ) (19)

In the special case of Eq. (16), we obtain the two-
dimensional system

dV] o) a

—= = b1+ by v+ by,

dr -

; (20)
ay, 2 2

== = by Y1+ bappy ya + bany v,

dt

Dividing one equation by the other gives a homoge-
neous equation, which, in more usual notation, has the
form

2 2
dy  ax +bxv+cy

3 5 (21)
dx  gx”+Bxy+yy

This equation can be integrated by different methods
(for example, in polar coordinates).
2004
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The qualitative pattern is determined by the number
and the character of the invariant rays

y = kx, (22)

which are found from the following cubic equation
implied by (21):

a+ bk +ck’

k = y
o+ Bk + vk

(23)

The case of complex roots is obtained by merging
two rays, which leaves two out of the four possibilities.
A more detailed analysis should take into account the
linear terms. These terms vanish only in the limit as
X — oo. This passage to the limit is a general case.
However, we have to consider another passage to the
limit:

X=Xy as N oo, (24)
This corresponds to the case where the number of y;
increases indefinitely, while their sum remains
bounded. Roughly speaking, this is a condition on a
larger number of components. The variety of types of
kinetics arising under this assumption is much wider
that discussed above, but a complete analysis (impossi-
ble with no computer) lies outside the scope of this
paper.

Finally, we can make one more assumption:

(25

X—>0 as N — oo,

In this case, only linear terms remain in the equation.
Therefore, the phase portrait of the system reduces to
three well-known possibilities: a node, a focus, or a
saddle.

CONCLUSIONS

The system involves initial data of three scales. One
corresponds to a small neighborhood of a fixed point,
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and the behavior of the system is described by the linear
terms of the reference equation
dX
— = a(X).
7 = aX)
The second scale corresponds to “finite” values of X.
The evolution of such states is described by the full
autonomous equation
dX
— = a(X)+b(X, X).
- = a(X)+b(X, X)
In the absence of stable steady-state regimes, the sys-
tem automatically goes to the following scale (large X).
The evolution is described by the highest-order terms of
the reference equation
dX
— = b(X, X).
dt ( )
All that was said above applies to the case of fixed
parameters in the evolution equation. An analogue of
the theory of phase changes related to the analysis of
phase portrait changes depending on variations in the
parameters of the system lies outside the scope of this
paper.

(26)
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